Martin boundary for some symmetric Lévy processes

نویسندگان

  • Panki Kim
  • Renming Song
  • Zoran Vondraček
چکیده

In this paper we study the Martin boundary of open sets with respect to a large class of purely discontinuous symmetric Lévy processes in R. We show that, if D ⊂ R is an open set which is κ-fat at a boundary point Q ∈ ∂D, then there is exactly one Martin boundary point associated with Q and this Martin boundary point is minimal. AMS 2010 Mathematics Subject Classification: Primary 60J50, 31C40; Secondary 31C35, 60J45, 60J75.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Thinness with Respect to Symmetric Lévy Processes

Minimal thinness is a notion that describes the smallness of a set at a boundary point. In this paper, we provide tests for minimal thinness at finite and infinite minimal Martin boundary points for a large class of purely discontinuous symmetric Lévy processes.

متن کامل

Uniform Boundary Harnack Principle for Rotationally Symmetric Lévy processes in General Open Sets

In this paper we prove the uniform boundary Harnack principle in general open sets for harmonic functions with respect to a large class of rotationally symmetric purely discontinuous Lévy processes. AMS 2010 Mathematics Subject Classification: Primary 60J45, Secondary 60J25, 60J50.

متن کامل

Boundary Behavior of Harmonic Functions for Truncated Stable Processes

For any α ∈ (0, 2), a truncated symmetric α-stable process in R is a symmetric Lévy process in R with no diffusion part and with a Lévy density given by c|x| 1{|x|<1} for some constant c. In [24] we have studied the potential theory of truncated symmetric stable processes. Among other things, we proved that the boundary Harnack principle is valid for the positive harmonic functions of this proc...

متن کامل

Intrinsic Ultracontractivity for Non-symmetric Lévy Processes

Recently in [17, 18], we extended the concept of intrinsic ultracontractivity to nonsymmetric semigroups and proved that for a large class of non-symmetric diffusions Z with measure-valued drift and potential, the semigroup of ZD (the process obtained by killing Z upon exiting D) in a bounded domain is intrinsic ultracontractive under very mild assumptions. In this paper, we study the intrinsic...

متن کامل

Boundary Harnack Principle for Symmetric Stable Processes

In this paper we study potential-theoretic properties of the symmetric :-stable processes (0<:<2): establishing the boundary Harnack principle for ratios of :-harmonic functions on any open sets, identifying the Martin boundary with the Euclidean boundary for open sets with a certain interior fatness property, and extending earlier results on intrinsic ultracontractivity and the conditional gau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014